609 research outputs found

    Measurement of the elastic scattering cross section of neutrons from argon and neon

    Get PDF
    Background: The most significant source of background in direct dark matter searches are neutrons that scatter elastically from nuclei in the detector's sensitive volume. Experimental data for the elastic scattering cross section of neutrons from argon and neon, which are target materials of interest to the dark matter community, were previously unavailable. Purpose: Measure the differential cross section for elastic scattering of neutrons from argon and neon in the energy range relevant to backgrounds from (alpha,n) reactions in direct dark matter searches. Method: Cross-section data were taken at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. These data were fit using the spherical optical model. Results: The differential cross section for elastic scatting of neutrons from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model parameters for the elastic scattering reactions were determined from the best fit to these data. The total elastic scattering cross section for neon was found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model predictions. Compared to a local optical-model for 40Ar, the elastic scattering cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions: These new data are important for improving Monte-Carlo simulations and background estimates for direct dark matter searches and for benchmarking optical models of neutron elastic scattering from these nuclei

    Anisotropic superexchange of a 90 degree Cu-O-Cu bond

    Full text link
    The magnetic anisotropy af a rectangular Cu-O-Cu bond is investigated in second order of the spin-orbit interaction. Such a bond is characteristic for cuprates having edge sharing CuO_2 chains, and exists also in the Cu_3O_4 plane or in ladder compounds. For a ferromagnetic coupling between the copper spins an easy axis is found perpendicular to the copper oxygen plaquettes in agreement with the experimental spin structure of Li_2CuO_2. In addition, a pseudo-dipolar interaction is derived. Its estimation in the case of the Cu_3O_4 plane (which is present for instance in Ba_2Cu_3O_4Cl_2 or Sr_2Cu_3O_4Cl_2) gives a value which is however two orders of magnitude smaller than the usual dipole-dipole interaction.Comment: 6 pages, 2 figures, improved referenc

    Critical point for the strong field magnetoresistance of a normal conductor/perfect insulator/perfect conductor composite with a random columnar microstructure

    Full text link
    A recently developed self-consistent effective medium approximation, for composites with a columnar microstructure, is applied to such a three-constituent mixture of isotropic normal conductor, perfect insulator, and perfect conductor, where a strong magnetic field {\bf B} is present in the plane perpendicular to the columnar axis. When the insulating and perfectly conducting constituents do not percolate in that plane, the microstructure-induced in-plane magnetoresistance is found to saturate for large {\bf B}, if the volume fraction of the perfect conductor pSp_S is greater than that of the perfect insulator pIp_I. By contrast, if pS<pIp_S<p_I, that magnetoresistance keeps increasing as B2{\bf B}^2 without ever saturating. This abrupt change in the macroscopic response, which occurs when pS=pIp_S=p_I, is a critical point, with the associated critical exponents and scaling behavior that are characteristic of such points. The physical reasons for the singular behavior of the macroscopic response are discussed. A new type of percolation process is apparently involved in this phenomenon.Comment: 4 pages, 1 figur

    Measurements at low energies of the polarization-transfer coefficient Kyy' for the reaction 3H(p,n)3He at 0 degrees

    Full text link
    Measurements of the transverse polarization coefficient Kyy' for the reaction 3H(p,n)3He are reported for outgoing neutron energies of 1.94, 5.21, and 5.81 MeV. This reaction is important both as a source of polarized neutrons for nuclear physics experiments, and as a test of theoretical descriptions of the nuclear four-body system. Comparison is made to previous measurements, confirming the 3H(p,n)3He reaction can be used as a polarized neutron source with the polarization known to an accuracy of approximately 5%. Comparison to R-matrix theory suggests that the sign of the 3F3 phase-shift parameter is incorrect. Changing the sign of this parameter dramatically improves the agreement between theory and experiment.Comment: 12 pages, RevTeX, 5 eps figures, submitted to Phys. Rev.

    Effects of the magnetic moment interaction between nucleons on observables in the 3N continuum

    Get PDF
    The influence of the magnetic moment interaction of nucleons on nucleon-deuteron elastic scattering and breakup cross sections and on elastic scattering polarization observables has been studied. Among the numerous elastic scattering observables only the vector analyzing powers were found to show a significant effect, and of opposite sign for the proton-deuteron and neutron-deuteron systems. This finding results in an even larger discrepancy than the one previously established between neutron-deuteron data and theoretical calculations. For the breakup reaction the largest effect was found for the final-state-interaction cross sections. The consequences of this observation on previous determinations of the ^1S_0 scattering lengths from breakup data are discussed.Comment: 24 pages, 6 ps figures, 1 png figur

    Composition of LHB Comets and Their Influence on the Early Earth Atmosphere Composition

    Get PDF
    Two main processes were responsible for the composition of this atmosphere: chemical evolution of the volatile fraction of the accretion material forming the planet and the delivery of gasses to the planetary surface by impactors during the late heavy bombardment (LHB). The amount and composition of the volatile fraction influences the outgassing of the Earth mantle during the last planetary formation period. A very weakened form of outgassing activity can still be observed today by examining the composition of volcanic gasses. An enlightenment of the second process is based on the sparse records of the LHB impactors resulting from the composition of meteorites, observed cometary comas, and the impact material found on the Moon. However, for an assessment of the influence of the outgassing on the one hand and the LHB event on the other, one has to supplement the observations with numerical simulations of the formation of volatiles and their incorporation into the accretion material which is the precursors of planetary matter, comets and asteroids. These simulations are performed with a combined hydrodynamic-chemical model of the solar nebula (SN). We calculate the chemical composition of the gas and dust phase of the SN. From these data, we draw conclusions on the upper limits of the water content and the amount of carbon and nitrogen rich volatiles incorporated later into the accretion material. Knowing these limits we determine the portion of major gas compounds delivered during the LHB and compare it with the related quantities of the outgassed species

    Effects of hole-doping on the magnetic ground state and excitations in the edge-sharing CuO2_2 chains of Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10}

    Full text link
    Neutron scattering experiments were performed on the undoped and hole-doped Ca2+x_{2+x}Y2x_{2-x}Cu5_5O10_{10}, which consists of ferromagnetic edge-sharing CuO2_2 chains. It was previously reported that in the undoped Ca2_2Y2_2Cu5_5O10_{10} there is an anomalous broadening of spin-wave excitations along the chain, which is caused mainly by the antiferromagnetic interchain interactions [Matsuda etet al.al., Phys. Rev. B 63, 180403(R) (2001)]. A systematic study of temperature and hole concentration dependencies of the magnetic excitations shows that the magnetic excitations are softened and broadened with increasing temperature or doping holes irrespective of QQ direction. The broadening is larger at higher QQ. A characteristic feature is that hole-doping is much more effective to broaden the excitations along the chain. It is also suggested that the intrachain interaction does not change so much with increasing temperature or doping although the anisotropic interaction and the interchain interaction are reduced. In the spin-glass phase (xx=1.5) and nearly disordered phase (xx=1.67) the magnetic excitations are much broadened in energy and QQ. It is suggested that the spin-glass phase originates from the antiferromagnetic clusters, which are caused by the hole disproportionation.Comment: 8 pages, submitted to Phys. Rev.

    The decay of quadrupole-octupole 11^- states in 40^{40}Ca and 140^{140}Ce

    Full text link
    Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying E1E1 excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the γ\gamma-decay behavior of candidates for the (21+31)1(2_1^+\otimes 3_1^-)_{1^-} state in the doubly-magic nucleus 40^{40}Ca and in the heavier and semi-magic nucleus 140^{140}Ce is investigated. Methods: (γ,γ)(\vec{\gamma},\gamma') experiments have been carried out at the High Intensity γ\gamma-ray Source (HIγ{\gamma}S) facility in combination with the high-efficiency γ\gamma-ray spectroscopy setup γ3\gamma^3 consisting of HPGe and LaBr3_3 detectors. The setup enables the acquisition of γ\gamma-γ\gamma coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for 40^{40}Ca the decay into the 313^-_1 state was observed, while for 140^{140}Ce the direct decays into the 21+2^+_1 and the 02+0^+_2 state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for N=82N=82 isotones. In addition, negative parities for two J=1J=1 states in 44^{44}Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the 111^-_1 excitation in the light-to-medium-mass nucleus 40^{40}Ca as well as in the stable even-even N=82N=82 nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.
    corecore